A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction.
نویسندگان
چکیده
The aim of the present study was to examine residues that are variably spliced in the juvenile and adult isoforms of the skeletal-muscle RyR1 (type 1 ryanodine receptor). The juvenile ASI(-) splice variant is less active than the adult ASI(+) variant and is overexpressed in patients with DM (myotonic dystrophy) [Kimura, Nakamori, Lueck, Pouliquin, Aoike, Fujimura, Dirksen, Takahashi, Dulhunty and Sakoda (2005) Hum. Mol. Genet. 14, 2189-2200]. In the present study, we explore the ASI region using synthetic peptides corresponding to rabbit RyR1 residues Thr3471-Gly3500 either containing [PASI(+)] or lacking [PASI(-)] the ASI residues. Both peptides increased [3H]ryanodine binding to rabbit RyR1s, increased Ca2+ release from sarcoplasmic reti-culum vesicles and increased single RyR1 channel activity. The peptide PASI(-) was more active in each case than PASI(+). [3H]Ryanodine binding to recombinant ASI(+)RyR1 or ASI(-)-RyR1 was enhanced more by PASI(-) than PASI(+), with the greatest increase seen when PASI(-) was added to ASI(-)RyR1. The activation of the RyR channels is consistent with the hypo-thesis that the peptides interrupt an inhibitory inter-domain inter-action and that PASI(-) is more effective at interrupting this interaction than PASI(+). We therefore suggest that the ASI(-) sequence interacts more tightly than the ASI(+) sequence with its binding partner, so that the ASI(-)RyR1 is more strongly inhibited (less active) than the ASI(+)RyR1. Thus the affinity of the binding partners in this inter-domain interaction may deter-mine the activities of the mature and juvenile isoforms of RyR1 and the stronger inhibition in the juvenile isoform may contribute to the myopathy in DM.
منابع مشابه
بررسی اثر مهار گیرنده رایانیدینی(RYR) بر فعالیت پیسمیکری
Background & Aim: The role of ryanodine receptor(RYR) on pacemaker activity of heart cells is controversial. Some investigators have suggested that it is obligatory, while others believe it is partial and not obligatory. The principle aim of this study was once more to characterize the role of ryanodine receptor(RyR) on the pacemaker activity of the sinoatrial node(SAN) and the atrioventric...
متن کاملDefective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts.
AIMS A domain peptide (DP) matching the Gly(2460)-Pro(2495) region of the cardiac type-2 ryanodine receptor (RyR2), DPc10, is known to mimic channel dysfunction associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), owing to its interference in a normal interaction of the N-terminal (1-600) and central (2000-2500) domains (viz. domain unzipping). Using DPc10 and two other...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملRyanodine receptor expression in the kidney and a non-excitable kidney epithelial cell.
An oligonucleotide probe to a conserved 3' region within the three identified ryanodine receptor-calcium release channel isoforms hybridized to a single clone from a rabbit kidney cDNA library. The kidney clone encoded the carboxyl-terminal 338 amino acids within the putative transmembrane domain of the type 2 ryanodine receptor sequence. Reverse transcriptase-polymerase chain reaction with iso...
متن کاملAberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte.
We have shown previously that the inter-domain interaction between the two domains of RyR (ryanodine receptor), CaMBD [CaM (calmodulin)-binding domain] and CaMLD (CaM-like domain), activates the Ca(2+) channel, and this process is called activation-link formation [Gangopadhyay and Ikemoto (2008) Biochem. J. 411, 415-423]. Thus CaM that is bound to CaMBD is expected to interfere the activation-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 401 1 شماره
صفحات -
تاریخ انتشار 2007